Nociception and Spinal Facilitation and Allostasis

F. H. Willard, Ph.D.
The University of New England
College of Osteopathic Medicine

Authorial copyright. Distributed by London Osteopathic Society for personal use only.
Osteopathic Philosophy

- The inter-relationship of body, mind and spirit
- Reciprocal networks of self-regulatory systems that maintains health and recovery from disease
- Importance of neural and fluid pathways in the actions of these networks
- Rational therapy is based on un-impeded activity of these systems
Major Issues:

• What is the pathophysiology of a “somatic (tissue) dysfunction”?
• What is the relationship between somatic dysfunction and spinal facilitation?
• How does this effect the output of the spinal cord?
• How does this effect the patient’s health?
Somatic Dysfunction (or Palpable Lesions)

- **Clinical Manifestation:**
 - Tissue texture changes
 - Increased sensitivity to touch
 - Anatomical asymmetry
 - Altered ease or range of motion

- **Pathological manifestation**
 - Edema and inflammation
Large Fiber (A-Afferent) System

- Large myelinated fibers
- Discrimination and proprioception
- Adaptation
Small Fiber (B-Afferent) System

- Small, lightly myelinated or unmyelinated fibers
- Nociception and general adaptation response
- Sensitization
Small Fiber System

• Location:
 – Dermis
 – Blood vessels and nerve
 – Skeletal muscle
 – Bone & joint
 – Intervertebral discs
 – Meninges
 – Viscera

• Activation:
 – Mechanical stress
 – Chemical irritation
Factors Activating Small Caliber, Primary Afferent Fibers

- Bradykinins
- Histamines
- Prostaglandins
- Serotonin
- H^+ and K^+
- Neuropeptides
Factors Mediating Vasodilation

• Bradykinins
• Histamines
• Prostaglandins
• Serotonin
• H\(^+\) and K\(^+\)
• Neuropeptides
Neurosecretory Function of Small, Primary Afferent Fibers

- Substance P
- Calcitonin gene-related polypeptide
- Somatostatin
Neurosecretory Properties of the Primary Afferent Nociceptor
Primary Afferent Activation

• Proinflammatory events
 – Release of neuropeptides
 – Degranulation of the mast cells
 – Chemoattraction of WBC
 – Vasodilatation
 – Release of prostaglandins
Peripheral Sensitization

- Requires initial and prolonged small caliber fiber activity

- Lowering of the activation threshold for the small caliber primary afferent fibers
Neurogenic Inflammatory Cycle
Neurogenic Inflammatory Cycle

Tissue Inflammation

Histamine Bradykinin Prostaglandins
Neurogenic Inflammatory Cycle

Tissue Inflammation

- Histamine
- Bradykinin
- Prostaglandins

Primary Afferent Fibers
Neurogenic Inflammatory Cycle

Tissue Inflammation

Histamine Bradykinin Prostaglandins

Primary Afferent Fibers

Spinal Cord

Authorial copyright. Distributed by London Osteopathic Society for personal use only.
Tissue Inflammation

Histamine Bradykinin Prostaglandins

Neuropeptides

Primary Afferent Fibers → Spinal Cord

Neurogenic Inflammatory Cycle
Neurogenic Inflammatory Cycle

Tissue Inflammation

Histamine
Bradykinin
Prostaglandins

Primary Afferent Fibers

Spinal Cord

Neuropeptides

Authorial copyright. Distributed by London Osteopathic Society for personal use only.
Neurogenic Inflammatory Cycle

Tissue Inflammation

Histamine
Bradykinin
Prostaglandins

Sensitized Primary Afferent Fibers

Spinal Cord

Neuropeptides
Small Afferent System Activation

• **Dynamic interaction** with local tissue
 – Exacerbation of local inflammation by neuropeptide release

• **Sensitization** of the primary afferent fibers
 – Activity-dependent plasticity

• Increased “**Afferent Drive**” on the spinal cord segments
Clinical Manifestations of Somatic Dysfunction

- Tissue texture changes
- Increased sensitivity to touch
Somatic Dysfunction

• **Peripheral afferent fiber sensitization**

• **Ventral horn facilitation**
Models of Spinal Facilitation

- Gamma-loop Model
- Nociceptive Model
Central Sensitization

Activity-dependent Plasticity

- Triggering of phosphorylation cascades
 - Opening of voltage-dependent channels
 - Calcium influx
- Induction of immediate-early genes
- Protein synthesis, e.g. Dynorphin
- Exitotoxicity and death of inhibitory neurons:
 apoptosis sensitization
Spinal Facilitation:
Wide Dynamic Range Neurons

- Polysensory convergence
- Activity-dependent plasticity
- Corresponds to pain perception
Spinal Facilitation - Application

• Back pain and muscle spasm secondary to joint injury or visceral dysfunction

• Self-sustaining loop
 – Primary (joint) pain
 – Segmental facilitation
 – Secondary muscle spasm and pain
 – Further segmental facilitation
Clinical Manifestations of Somatic Dysfunction

- Tissue texture changes
- Increased sensitivity to touch
- Anatomical asymmetry
- Altered ease or range of motion
Central Facilitation Pathways

• Acute Facilitation
 – Physiological state
 – Protective in nature

• Chronic Facilitation
 – Pathological state
 – Destructive in nature
Spinal Facilitation:
Upstream Projections

- **Anterolateral system**
 - Spinoreticular tract

- **Brainstem**
 - Activation of descending control systems
 - Activation of the brainstem arousal system
Raphe Nuclei

Descending Brainstem Projections
Raphe Nuclei

- Descending projections to the spinal cord gray matter
Emotions → Limbic Forebrain → Hypothalamus

Midbrain → Neuropeptides

Hormones

Opioids

Serotonin

Norepinephrine

Rostral Medulla

Medullary or Spinal Dorsal Horn

Authorial copyright. Distributed by London Osteopathic Society for personal use only.
Spinal Facilitation

- Related to small caliber fibers activity
- Develops a self-sustaining component in the spinal cord
- Controlled by brainstem activity and influenced by the limbic forebrain
The Arousal System of the Brainstem

- Rostral reticular formation

- Inputs:
 - Auditory system
 - Visual system
 - Somatic sensory system
 - Limbic (emotional) system
The Arousal System: Output

- Locus coeruleus
- Hypothalamus
The Arousal System

- The Hypothalamus (Hy)
- The Locus coeruleus (LC)
Arousal System

Sensory Stimuli

Emotional Stimuli

Autonomic Nervous System

Hypothalmic-Pituitary-Adrenal Axis

LC

Hy

Authorial copyright. Distributed by London Osteopathic Society for personal use only.
The Arousal System: Output

• Locus coeruleus
 • Sympathetic nervous system
 – Catecholamines
Sympathetic Nervous System

• Increases heart rate and blood pressure
• Prepares the blood to clot
• Dilates airways
• Decreases GI activity and libido
• Shunts blood to muscles
• Modulates the immune system
The Arousal System: Output

- *Locus coeruleus*
 - Sympathetic nervous system
 - Catecholamines

- *Hypothalamus*
 - Hypothalamic-pituitary-adrenal axis
 - Cortisol
Hypothalmic-Pituitary-Adrenal Axis

- Hypothalmus
 - Corticotropin-releasing hormone (CRH)
- Anterior pituitary gland
 - Adrenocorticotropic hormone (ACTH)
- Adrenal gland
 - Glucocorticoids (cortisol)
HPA Axis

Afferent Drives

- Circadian rhythm
- Nociceptive somatic stimuli
- Nociceptive visceral stimuli
- Emotional stimuli
Adrenal Steroid System

• Savages for energy (gluconeogenesis):
 – Proteolysis
 – Lipolysis
• Facilitates wound repair and blood clotting
• Facilitates norepinephrine
• Modulates the immune system
HPA – LC-NE Axis

Chrousos, NEJM 332:1351, 1995
Summary

• "Afferent drive" activates arousal system

• Compensatory state:
 – Catecholamine secretion
 – Cortisol secretion
 – Cytokine secretion

• Feedback pathways
Major Homeostatic Systems

- Heart rate
- Blood pressure
- Respiratory rate
- Temperature
- Blood glucose
- Ion and pH balance
- Basal metabolic rate
What Is The Compensatory Response?

- Limited alterations can occur in the homeostatic rhythms
- Chief architect of this adaptation is termed the Allostatic Systems:
 - HPA axis
 - ANS
 - Cytokines
Examples of Allostasis

- Public Speaking
- Examinations
Common Allostatic Stimulants

- Sleep-wake
- Supine-standing
- Exercise
- Infection
- Trauma
- Fright and emotional confrontation
Response To Allostasis

- Repeated “hits”
- Lack of adaptation
- Prolonged response
- Inadequate response
What Is The Price For Allostasis?

• Short-term adaptations are helpful for wound healing and tissue repair
• The gradual breakdown of feedback pathways renders long-term adaptations harmful
• “Allostatic Load” - The long term price for an uncontrolled compensatory response
Measures of Allostatic Load

- Systolic and diastolic blood pressure
- Waist-hip ratio
- Serum HDL and total cholesterol levels
- Blood plasma - total glycosylated hemoglobin
- Serum dehydroepiandrosterone sulfate
- 12 hour urinary norepi- and epinephrine levels
Cardiovascular System

Effects of Allostasis: Cortisol, Catecholamines and Cytokines

• Hypertension
• Artherosclerosis
• Left ventricular hypertrophy
• Disinhibition of the fibrinogen system
• Increased risk of myocardial infarction

Authorial copyright. Distributed by London Osteopathic Society for personal use only.
Nervous System
Effects of Allostasis: Cortisol, Catecholamines and Cytokines

- Depression
- Anxiety
- Memory loss
- Reduced cognition
- Behavioral changes
 - hostility and aggression
 - risk-taking behavior
Immune System

Effects of Allostasis: Cortisol, Catecholamines and Cytokines

- **Immunosupression**
 - Suppression of T-Cell activities

- **Autoimmune disease**
 - Facilitation of some B-Cell activities
The Metabolic Syndrome

- Hypertension
- Hyperlipidemia
- Hyperinsulinemia
 - Hyperglycemia
Key Concepts

• Acute response is beneficial

• Chronic response is harmful

• Damaged feedback pathways
Homeostasis
Allostasis

The Arousal System
- Neuro-Endocrine-Immune Axis
- Norepinephrine
- Cortisol
- Cytokines

Cardiovascular System

Nervous System

Immune System

Renal System

Gastrointestinal System
Osteopathic Philosophy

• The inter-relationship of body, mind and spirit
• Reciprocal networks of self-regulatory systems that maintains health and recovery from disease
• Importance of neural and fluid pathways in the actions of these networks
• Rational therapy is based on un-impeded activity of these systems